Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199510

RESUMO

During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.


Assuntos
Acetiltransferases/genética , Neoplasias da Mama/genética , Estresse do Retículo Endoplasmático/genética , Proteínas dos Microtúbulos/genética , Tunicamicina/farmacologia , Acetilação/efeitos dos fármacos , Acetiltransferases/antagonistas & inibidores , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas dos Microtúbulos/antagonistas & inibidores , Microtúbulos/efeitos dos fármacos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Microambiente Tumoral/efeitos dos fármacos
2.
Biomedicines ; 8(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917017

RESUMO

Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can target microtubules by specifically acting on cancer cells only. In this study, we identified chemicals that can act as anticancer agents by specifically binding to acetylated microtubules, which are predominant in triple-negative breast cancer (TNBC). The chemical compounds disrupted acetylated microtubule lattices by interfering with microtubule access to alpha-tubulin acetyltransferase 1 (αTAT1), a major acetyltransferase of microtubules, resulting in the increased apoptotic cell death of MDA-MB-231 cells (a TNBC cell line) compared with other cells, such as MCF-10A and MCF-7, which lack microtubule acetylation. Moreover, mouse xenograft experiments showed that treatment with the chemical compounds markedly reduced tumor growth progression. Taken together, the newly identified chemical compounds can be selective for acetylated microtubules and act as potential therapeutic agents against microtubule acetylation enrichment in TNBC.

3.
Cell Mol Life Sci ; 77(20): 4143-4161, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31912196

RESUMO

Myofibroblasts are the major cell type that is responsible for increase in the mechanical stiffness in fibrotic tissues. It has well documented that the TGF-ß/Smad axis is required for myofibroblast differentiation under the rigid substrate condition. However, the mechanism driving myofibroblast differentiation in soft substrates remains unknown. In this research, we demonstrated that interaction of yes-associated protein (YAP) and acetylated microtubule via dynein, a microtubule motor protein drives nuclear localization of YAP in the soft matrix, which in turn increased TGF-ß1-induced transcriptional activity of Smad for myofibroblast differentiation. Pharmacological and genetical disruption of dynein impaired the nuclear translocation of YAP and decreased the TGF-ß1-induced Smad activity even though phosphorylation and nuclear localization of Smad occurred normally in α-tubulin acetyltransferase 1 (α-TAT1) knockout cell. Moreover, microtubule acetylation prominently appeared in the fibroblast-like cells nearby the blood vessel in the fibrotic liver induced by CCl4 administration, which was conversely decreased by TGF-ß receptor inhibitor. As a result, quantitative inhibition of microtubule acetylation may be suggested as a new target for overcoming fibrotic diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Dineínas/metabolismo , Fibroblastos/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia , Acetilação , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP
4.
Anim Cells Syst (Seoul) ; 23(6): 414-421, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853379

RESUMO

Certain cancer types, including breast cancer, are accompanied with stiffening of the surrounding extracellular matrix (ECM). Previous studies suggest that this stiffened matrix influences cancer cell progression, such as proliferation and invasion, both biochemically and mechanically. However, the contribution of ECM stiffness to cellular response to diverse stresses, which most cancer cells are exposed to, has not been elucidated. In this study, we demonstrate that expression of the Shwachman-Bodian-Diamond syndrome protein (SDBS) in a stiff matrix protects cells from apoptosis induced by environmental stress, including anticancer drugs. Cells cultured on stiff matrices were less apoptotic process induced by serum depletion than those cultured on the soft matrix. Interestingly, knockdown (KD) of SDBS among the apoptosis-related genes significantly increased apoptosis induced by serum depletion in cells cultured in a stiff matrix. Apoptosis of SDBS KD cells in a stiff matrix was significantly inhibited by the caspase 8 inhibitor, indicating that activation of the caspase 8 pathway by SDBS KD is critical for cancer cell apoptosis in stiff matrices. Additionally, we also found that downregulation of SDBS also effectively increased cell death induced by anticancer drugs, including paclitaxel, cisplatin, and eribulin. Taken together, our findings suggest that inhibition of SDBS enhances effective chemotherapy of malignant breast cancer cells in stiff ECM environments.

5.
J Cell Physiol ; 234(6): 9216-9224, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341913

RESUMO

Alterations in mechanical properties in the extracellular matrix are modulated by myofibroblasts and are required for progressive fibrotic diseases. Recently, we reported that fibroblasts depleted of SPIN90 showed enhanced differentiation into myofibroblasts via increased acetylation of microtubules in the soft matrix; the mechanisms of the underlying signaling network, however, remain unclear. In this study, we determine the effect of depletion of SPIN90 on FAK/ROCK signaling modules. Transcriptome analysis of Spin90 KO mouse embryonic fibroblasts (MEF) and fibroblasts activated by TGF-ß revealed that Postn is the most significantly upregulated gene. Knockdown of Postn by small interfering RNA suppressed cell adhesion and myofibroblastic differentiation and downregulated FAK activity in Spin90 KO MEF. Our results indicate that SPIN90 depletion activates FAK/ROCK signaling, induced by Postn expression, which is critical for myofibroblastic differentiation on soft matrices mimicking the mechanical environment of a normal tissue.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Regulação para Baixo/genética , Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Animais , Diferenciação Celular , Adesões Focais/metabolismo , Camundongos Knockout , Miofibroblastos/metabolismo
6.
Biochem Biophys Res Commun ; 500(4): 937-943, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29709477

RESUMO

Accumulating evidence has shown that matrix stiffening in cancer tissue by the deposition of extracellular matrix (ECM) is closely related with severe tumor progression. However, much less is known about the genes affected by matrix stiffness and its signaling for cancer progression. In the current research, we investigated the differential gene expression of a non-small lung adenocarcinoma cell line, H1299, cultured under the conditions of soft (∼0.5 kPa) and stiff (∼40 kPa) matrices, mimicking the mechanical environments of normal and cancerous tissues, respectively. For integrated transcriptome analysis, the genes identified by ECM stiffening were compared with 8248 genes retrieved from The Cancer Genome Atlas Lung Adenocarcinoma (TCGA). In stiff matrix, 29 genes were significantly upregulated, while 75 genes were downregulated. The screening of hazard ratios for these genes using the Kaplan-Meier Plotter identified 8 genes most closely associated with cancer progression under the condition of matrix stiffening. Among these genes, spindle pole body component 25 homolog (SPC25) was one of the most up-regulated genes in stiff matrix and tumor tissue. Knockdown of SPC25 in H1299 cells using shRNA significantly inhibited cell proliferation with downregulation of the expression of checkpoint protein, Cyclin B1, under the condition of stiff matrix whereas the proliferation rate in soft matrix was not affected by SPC25 silencing. Thus, our findings provide novel key molecules for studying the relationship of extracellular matrix stiffening and cancer progression.


Assuntos
Proliferação de Células/genética , Matriz Extracelular/química , Regulação Neoplásica da Expressão Gênica , Mecanotransdução Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Mucosa Respiratória/metabolismo , Atlas como Assunto , Fenômenos Biomecânicos , Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Perfilação da Expressão Gênica , Células HEK293 , Dureza , Humanos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Anotação de Sequência Molecular , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Mucosa Respiratória/patologia , Transcriptoma
7.
Sci Rep ; 7(1): 6847, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754957

RESUMO

Increasing matrix stiffness caused by the extracellular matrix (ECM) deposition surrounding cancer cells is accompanied by epithelial-mesenchymal transition (EMT). Here, we show that expression levels of EMT marker genes along with discoidin domain receptor 2 (DDR2) can increase upon matrix stiffening. DDR2 silencing by short hairpin RNA downregulated EMT markers. Promoter analysis and chromatin immunoprecipitation revealed that c-Myb and LEF1 may be responsible for DDR2 induction during cell culture on a stiff matrix. Mechanistically, c-Myb acetylation by p300, which is upregulated on the stiff matrix, seems to be necessary for the c-Myb-and-LEF1-mediated DDR2 expression. Finally, we found that the c-Myb-DDR2 axis is crucial for lung cancer cell line proliferation and expression of EMT marker genes in a stiff environment. Thus, our results suggest that DDR2 regulation by p300 expression and/or c-Myb acetylation upon matrix stiffening may be necessary for regulation of EMT and invasiveness of lung cancer cells.


Assuntos
Receptor com Domínio Discoidina 2/metabolismo , Transição Epitelial-Mesenquimal , Matriz Extracelular/química , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Acetilação , Linhagem Celular Tumoral , Proliferação de Células , Receptor com Domínio Discoidina 2/genética , Células HEK293 , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição de p300-CBP/metabolismo
8.
Biochem Biophys Res Commun ; 482(1): 8-14, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836544

RESUMO

Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 or the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of ß-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression.


Assuntos
Acetiltransferases/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Microtúbulos/genética , Via de Sinalização Wnt/genética , Proteína Wnt1/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação para Baixo/genética , Técnicas de Inativação de Genes , Humanos , Invasividade Neoplásica
9.
Oncotarget ; 7(14): 17829-43, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26893363

RESUMO

Mammalian diaphanous-related formin 1 (mDia1) expression has been linked with progression of malignant cancers in various tissues. However, the precise molecular mechanism underlying mDia1-mediated invasion in cancer cells has not been fully elucidated. In this study, we found that mDia1 is upregulated in invasive breast cancer cells. Knockdown of mDia1 in invasive breast cancer profoundly reduced invasive activity by controlling cellular localization of membrane type 1-matrix metalloproteinase (MT1-MMP) through interaction with microtubule tracks. Gene silencing and ectopic expression of the active form of mDia1 showed that mDia1 plays a key role in the intracellular trafficking of MT1-MMP to the plasma membrane through microtubules. We also demonstrated that highly invasive breast cancer cells possessed invasive activity in a 3D culture system, which was significantly reduced upon silencing mDia1 or MT1-MMP. Furthermore, mDia1-deficient cells cultured in 3D matrix showed impaired expression of the cancer stem cell marker genes, CD44 and CD133. Collectively, our findings suggest that regulation of cellular trafficking and microtubule-mediated localization of MT1-MMP by mDia1 is likely important in breast cancer invasion through the expression of cancer stem cell genes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Forminas , Humanos , Células MCF-7 , Metaloproteinase 14 da Matriz/genética , Microtúbulos/metabolismo , Invasividade Neoplásica , Transfecção
10.
Sci Rep ; 6: 21564, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26877098

RESUMO

Dynamic interaction between cancer cells and the surrounding microenvironment is critical for cancer progression via changes in cellular behavior including alteration of secreted molecules. However, the molecular mechanisms underlying the influence exerted by the cancer microenvironment on secretion of molecules during cancer progression remain largely unknown. In this study, we report that secretion of spingsine-1-phosphate (S1P) and its regulator, SphK1 expression is dependent of the substrate rigidity, which is critical for the balance between cancer cell invasion and adhesion. Conditioned media (CM) of MDA-MB-231, an aggressive breast cancer cell obtained from soft substrate (~0.5 kPa) induced chemo-attractive invasion, while CM obtained from stiff substrate (~2.5 kPa) increased cell adhesion instead. We found that the expression of SphK1 is upregulated in the stiff substrate, resulting in an increase in S1P levels in the CM. We also found that upregulation of SphK1 expression in the stiff substrate is dominant in metastatic cancer cells but not in primary cancer cells. These results suggest that alterations in the mechanical environment of the ECM surrounding the tumor cells actively regulate cellular properties such as secretion, which in turn, may contribute to cancer progression.


Assuntos
Neoplasias da Mama/fisiopatologia , Adesão Celular , Matriz Extracelular/fisiologia , Lisofosfolipídeos/metabolismo , Metástase Neoplásica/fisiopatologia , Esfingosina/análogos & derivados , Fenômenos Biomecânicos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Invasividade Neoplásica/fisiopatologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/metabolismo , Microambiente Tumoral
11.
Int J Cancer ; 135(11): 2547-57, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24740739

RESUMO

Discoidin domain receptors (DDRs) are unusual receptor tyrosine kinases (RTKs) that are activated by fibrillar collagens instead of soluble growth factors. DDRs play an important role in various cellular functions and disease processes, including malignant progression. Compared to other RTKs, DDRs have relatively long juxtamembrane domains, which are believed to contribute to receptor function. Despite this possibility, the function and mechanism of the juxtamembrane domain of DDRs have not yet been fully elucidated. In this study, we found that the cytoplasmic juxtamembrane 2 (JM2) region of DDR2 contributed to receptor dimerization, which is critical for receptor activation in response to collagen stimulation. A collagen-binding assay showed that JM2 was required for efficient binding of collagen to the discoidin (DS) domain. Immunohistochemical analysis of DDR2 expression using a tissue microarray demonstrated that DDR2 was overexpressed in several carcinoma tissues, including bladder, testis, lung, kidney, prostate and stomach. In H1299 cells, inhibition of DDR2 activity by overexpressing the juxtamembrane domain containing JM2 suppressed collagen-induced colony formation, cell proliferation and invasion via the inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9. Taken together, our results suggest that JM2-mediated dimerization is likely to be essential for DDR2 activation and cancer progression. Thus, inhibition of DDR2 function using a JM2-containing peptide might be a useful strategy for the treatment of DDR2-positive cancers.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Sítios de Ligação , Western Blotting , Adesão Celular , Reagentes de Ligações Cruzadas/farmacologia , Receptores com Domínio Discoidina , Progressão da Doença , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Microscopia de Fluorescência , Fosforilação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...